Search by property

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Abstract" with value "In general, if a variable can be expressed as a function of its own maximum value, that function may be called a discount function. Delay discounting and probability discounting are commonly studied in psychology, but memory, matching, and economic utility also may be viewed as discounting processes. When they are so viewed, the discount function obtained is hyperbolic in form. In some cases the effective discounting variable is proportional to the physical variable on which it is based. For example, in delay discounting, the physical variable, delay (''D''), may enter into the hyperbolic equation as ''kD''. In many cases, however, the discounting data are not well described with a single-parameter discount function. A much better fit is obtained when the effective variable is a power function of the physical variable (''kD<sup>s</sup>'' in the case of delay discounting). This power-function form fits the data of delay, probability, and memory discounting as well as other two-parameter discount functions and is consistent with both the generalized matching law and maximization of a constant-elasticity-of-substitution utility function.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Notes on discounting  + (In general, if a variable can be expressedIn general, if a variable can be expressed as a function of its own maximum value, that function may be called a discount function. Delay discounting and probability discounting are commonly studied in psychology, but memory, matching, and economic utility also may be viewed as discounting processes. When they are so viewed, the discount function obtained is hyperbolic in form. In some cases the effective discounting variable is proportional to the physical variable on which it is based. For example, in delay discounting, the physical variable, delay (''D''), may enter into the hyperbolic equation as ''kD''. In many cases, however, the discounting data are not well described with a single-parameter discount function. A much better fit is obtained when the effective variable is a power function of the physical variable (''kD<sup>s</sup>'' in the case of delay discounting). This power-function form fits the data of delay, probability, and memory discounting as well as other two-parameter discount functions and is consistent with both the generalized matching law and maximization of a constant-elasticity-of-substitution utility function. constant-elasticity-of-substitution utility function.)